Rails 3 Upgrade
Handboo

by Jeremy McAnally

Buy the whole book!

Buy the whole book for $12 and get...

+ Almost 120 pages of upgrade information

A step-by-step guide to upgrading your app to Rails 3

+ High-level discussion of what’s new in Rails 3

+ Practical tips on using Rails 3’s new features to improve your code
+ Real case studies of upgrading non-trivial applications

+ Detailed checklists for upgrading

Head over to http://railsupgradehandbook.com/ for more information and purchasing!

http://railsupgradehandbook.com/

Rails Upgrade Handbook

until you execute that query by calling an enumerable method like al11, first, or each (you
may know this concept as deferred execution from other ORMs). So, if you wanted to find the
first five site records that are active, you might do this in Rails 2:

Site.find(:all, :conditions => {:active => true}, :limit => 5)
With Rails 3 and Active Relation, though, the code would look like this:
Site.where(:active => true) .limit (5)

Just like a named scope, these Relation objects chain up with each other and compose
the SQL query: Site.where returns a Relation that we call 1imit on, which returns a
Relation that we call £ind on.

where(...) limit all ol <Execute SQL»>

Relation Relation

As you'’ll see in Section 4.4, this new syntax opens up a lot of possibilities that either weren’t
possible or were quite ugly with the old API.

53

Rails Upgrade Handbook

3. Getting bootable

So, you've prepped the application, got the new files generated, and are now ready to move
forward with the upgrade. First, we’re going to get the application reconfigured with the new-
style configuration files, and then we’ll make some essential code changes.

3.1. Configuring your app again

Now comes the task of configuration. There aren’t a whole ton of changes, but navigating
them can trip up the novice and journey(wo)man alike. Things like initializers and your
settings in database.yml can generally stay the same; the main changes have to do with
environment.rb, the router, and gem vendoring.

PROTIP: When using SQLite, the database file is now the database key rather
than the dbfile key.

3.2. Configuring the environment

In all previous Rails versions, most configuration and initialization happened in config/
environment.rb. In Rails 3, most of this logic has moved t0 config/application.rb
and a host of special initializers in config/initializers. If you open up config/
environment.rb, you'll notice it’s been seriously slimmed down, and looks like this now:

32

Rails Upgrade Handbook

named scope is now just scope
The named scope method has been renamed to just scope.
More information: http://github.com/rails/...

The culprits:
- app/models/group.rb
- app/models/post.rb

It explains the issue, where to get more information on it, and in which files the issue
was found. It checks for a wide range of issues (e.g., old generators, busted plugins,
environment.rb conversion requirements, old style routes and constants, etc.), so at least
run this task, even if you don’t use the rest of the plugin; it will save you a lot of time.
It doesn’t cover everything 100%, but I've found it’s great for quickly identifying juicy, low-
hanging upgrade fruit.

2.2.2. rails:upgrade: routes: Upgrading routes

This task will evaluate the routes in your current routes. rb file and generate new code for
Rails 3. To generate a new routes file, simply run the task inside your Rails application:

rake rails:upgrade:routes
It will take a routes file like:

ActionController::Routing: :Routes.draw do |map|
map.resources :posts, :collection => {:drafts => :get, :published => :get}

24

Rails Upgrade Handbook

JavaScript

Frerr e #form.onSubmit = function...
% =
"q;, Z
1 -
) P
¢ z
Y £
/A
<form ... data-remote="true">
Name
Search

If you have calls to 1ink to function or the other helpers, you'd be better served by
turning those into proper JavaScript-powered links, writing custom JavaScript to power links
sort of like the new Rails helpers do, or downloading the aforementioned plugin to carry you
over.

4.3. Building better routes

As you saw in Section 3.2.1, the Rails router DSL has changed significantly, and as part of
the refactoring, the Rails core team has also added a number of new features. One of the
best new router features in Rails 3 is optional segments; this means that you now have control
over what route segments are not required to match the route (whereas before they were
hardcoded names like id). So, for example, let’s say you had an auction site with items that
are categorized in categories and subcategories. You might have routes like this in Rails 2.x:

68

Rails Upgrade Handbook

Deprecation

config.controller
O paths/config.controller
_paths= are deprecated.

config.log path/config.log path=
are deprecated.

The gem method in application templates
deprecated the :env key.

The freeze! method in application templates
is deprecated.

7.2. Plugins

How to fix it

Use paths.app.
controllers/paths.app.
controllers=.

Do paths.log/paths.log= instead.

Changeitto :only

It’s no longer needed.

Deprecation How to fix it
Putting Rake tasks in [path] /tasks or [path]/rails/ Place them in [path]/
tasks is no longer supported. lib/tasks.
7.3. Controllers/dispatch
Deprecation How to fix it

- has been deprecated.

d session.update is no longer effective.

110

Disabling sessions for a single controller Sessions are lazy loaded, so don’t worry about

them if you don’t use them.

Use session.replace instead.

Rails Upgrade Handbook

4.4.3. Caching and relations

One of the smartest uses of the Relation objects is to alleviate your caching burden.
Normally in a Rails application, you want to cache three things: template rendering, sticky
controller logic, and database query results. Rails has facilities for each one, but it’s difficult to
balance each tier. Often times, people will cache templates but still let their controller logic run;
they will cache database objects and forget to properly cache their views.

But with the new Active Record functionality and Relation objects, it makes it simple to get
a lot of speed out of just a little caching logic. The trick is that queries are not run until you call
something like a11 or each on the Relation object, so if you push this logic into the view as
much as possible and cache the view, then you can get twice the caching power from a simple
mechanism. So, for example, let’s say you had a controller action like this:

def index
@posts = Post.where (:published => true).limit (20)
end

Currently, @Gposts is a Relation and has not executed a database query. If our view looked
like this...

<% (@posts.each do |post| %>
<%= render :partial => 'post', :o0bject => post %>
<% end %>

...then the query would be executed when we call each. But, if we wrap that in a cache block
like so:

82

Buy the whole book!

Buy the whole book for $12 and get...

+ Almost 120 pages of upgrade information

A step-by-step guide to upgrading your app to Rails 3

+ High-level discussion of what’s new in Rails 3

+ Practical tips on using Rails 3’s new features to improve your code
+ Real case studies of upgrading non-trivial applications

+ Detailed checklists for upgrading

Head over to http://railsupgradehandbook.com/ for more information and purchasing!

http://railsupgradehandbook.com/

	Rails Upgrade Handbook
	1. Introduction
	1.1. The Big Picture
	1.1.1. Lifecycle changes
	1.1.2. Making controllers flexible
	1.1.3. Where models are concerned
	1.1.4. Other pieces

	1.2. That’s great…but why bother?
	1.2.1. Performance
	1.2.2. New features
	1.2.3. Easier segmentation

	2. Essentials
	2.1. Preliminary steps
	2.1.1. Getting the right Ruby
	2.1.1.1. Mac OS X or other Unix platforms
	2.1.1.2. Windows

	2.1.2. Installing Rails 3

	2.2. Automating some of the upgrade: rails_upgrade
	2.2.1. rails:upgrade:check: Find out what needs to be upgraded
	2.2.2. rails:upgrade:routes: Upgrading routes
	2.2.3. rails:upgrade:gems: Creating Gemfiles
	2.2.4. rails:upgrade:backup: Backing up important files
	2.2.5. rails:upgrade:configuration: Generating your new configuration files

	2.3. Starting an upgrade with the plugin
	2.3.1. Run the application checks
	2.3.2. Back up important files

	2.4. Regenerate the application

	3. Getting bootable
	3.1. Configuring your app again
	3.2. Configuring the environment
	3.2.1. Converting your routes file
	3.2.2. Setting up the gem bundler

	3.3. Code fixes
	3.3.1. RAILS_* constants are deprecated
	3.3.2. Converting mailers to the new API
	3.3.3. New Active Record API

	3.4. Minor pre-booting issues
	3.4.1. Delete new_rails_defaults.rb
	3.4.2. Rack configuration is required

	3.5. Booting the application
	3.6. It’s booted! Now what…?
	3.6.1. Check out your views
	3.6.2. Deprecations coming soon

	4. Improving your application with Rails 3
	4.1. Cleaning up controllers
	4.1.1. Responders
	4.1.2. Cleaner flash messages

	4.2. Creating improved views
	4.2.1. Making your views safer
	4.2.2. Better JavaScript with Rails 3

	4.3. Building better routes
	4.3.1. Routing to Rack applications

	4.4. Improving your model logic
	4.4.1. Better query composition
	4.4.2. Cleaning up your validations
	4.4.3. Caching and relations

	4.5. Building better data classes

	5. Case Studies
	5.1. Application Case Study: Perwikity
	5.1.1. Getting to bootable
	5.1.2. A few dangling issues
	5.1.3. Lessons learned

	5.2. Application Case Study: Jamis Buck’s Bucketwise
	5.2.1. Broken to bootable
	5.2.2. Finishing up
	5.2.3. Things to remember

	6. Checksheet: The Upgrade Process
	6.1. First Steps
	6.2. Reconfiguration
	6.3. Fix code
	6.4. Booting

	7. Checksheet: Deprecations
	7.1. General/configuration
	7.2. Plugins
	7.3. Controllers/dispatch
	7.4. Models
	7.5. Views
	7.6. Testing
	7.7. Mailers

