
th
e future of rails

Rails Magazine
fine articles on Ruby & Rails

Interview with Yehuda Katz
by Rupak Ganguly

Rails Background Processing
By James Harrison

Generating PDF with ODF templates
by Rodrigo Rosenfeld Rosas

Interview with
David Heinemeier Hansson

by Mark Coates

Feel the Radiance with
Radiant CMS

by Saurabh Bhatia

Interview with
Thomas Enebo

by Rupak Ganguly

Oracle Tips and Tricks
by Greg Donald

RubyKaigi Exclusive Coverage

RubyKaigi 2009 Roundup
by Ehab El-Badry

Interview with Matz
by Muhammad Ali

Interview with Koichi Sasada
by Muhammad Ali

1

ISSN 1916-8004 http://RailsMagazine.comVolume 1, Issue #4

http://railsmagazine.com
http://RailsMagazine.com

2
2﻿ �﻿﻿

2

http://www.newrelic.com/

3

A Word from the Editor
by Olimpiu Metiu

Welcome to this new installment of Rails Magazine! While
not the most technical nor the largest, we believe this still is
one of the best ones so far.

Thanks to all authors and editors who made this issue pos-
sible! Carlo Pecchia recently joined the editorial team, we are
thankful to have him on board. If you like the magazine, we
invite you to consider contributing an article or joining as an
editor.

While there are a variety of techniques for PDF genera-
tion, automation with OpenOffice is a novel approach discov-
ered by Rodrigo Rosas, which works well for fairly complex
layouts or when supporting non-technical users. We'll cover
additional techniques for PDF generation in the next issues.

Background processing becomes more important for
Rails developers, and James Harrison presents a solution
using delayed_job. Our next issue will present an alternative
technique.

Saurabh Bhatia introduces the Radiant CMS, a first article
in a mini-series on Radiant programming.

We asked DHH, Yehuda and Thomas Enebo to share their
thoughts on Rails 3 and beyond. DHH goes a step further
and hints at what to expect beyond it.

Finally, special thanks to Muhammad Ali and Ehab El-
Badry for their coverage of Ruby Kaigi 2009. I hope you will
enjoy reading their interviews with Matz and Koichi as much
as I did.

Discuss: http://railsmagazine.com/4/1

Contents

A Word from the Editor...3
by Olimpiu Metiu

Background Processing with Delayed_Job..................4
by James Harrison

Generating PDF with ODF templates...........................8
by Rodrigo Rosenfeld Rosas

Interview with Yehuda Katz...13
by Rupak Ganguly

Interview with David Heinemeier Hansson..............16
by Mark Coates

Feel the Radiance with Radiant CMS.........................18
by Saurabh Bhatia

Interview with Thomas Enebo.....................................21
by Rupak Ganguly

Oracle Tips and Tricks..23
by Greg Donald

Ruby Kaigi – Exclusive Coverage................................24

RubyKaigi 2009 Roundup..25
by Ehab El-Badry

Interview with Matz..28
by Muhammad Ali

Interview with Koichi Sasada.......................................30
by Muhammad Ali

Olimpiu Metiu is a Toronto-based
architect and web strategist.

He led the Emergent Technologies group at
Bell Canada for the past couple of years,

 and his work includes many of Canada's
 largest web sites and intranet portals.

Olimpiu is currently a senior architect at
Research in Motion (the maker of BlackBerry),

where he is responsible with the overall
architecture of an amazing collaboration platform.

A long-time Rails enthusiast, he founded Rails Magazine
 as a way to give back to this amazing community.

Follow on Twitter: http://twitter.com/olimpiu

Connect on LinkedIn: http://www.linkedin.com/in/ometiu

A Word from the Editor by Olimpiu Metiu

3

http://railsmagazine.com/3/1
http://bell.ca
http://rim.net
http://RailsMagazine.com
http://twitter.com/olimpiu
http://www.linkedin.com/in/ometiu

4
4

Introduction to background processing

If you’ve written an application before, chances are you
ended up wanting to do something while the user waited for
that thing, that could potentially take a while. It might be
generating a PDF, sending out bulk emails, grabbing infor-
mation from an API, or something that involves a lot of data
which is slow to load. In these cases, you can take advantage
of background processing; chopping this operation into a
job or task, giving it to a background worker that processes it
outside of the web request, and returning the data to the user
later through AJAX or simply in the data your site shows.
Let’s take a real-world example to explore this a bit better.

I have an application which takes a user’s API key and
user ID and gives it to the game EVE Online. This application
then makes around 10 calls to the API with these credentials,
stores around 3,000 rows of data, and the report generated
is then made available to another user of the site who has
requested this report. With this API-fetching stage potentially
taking tens of seconds, or more if the API servers are being
slow or are down, it makes sense to pull the data-retrieving
stage out to a separate task which is triggered by the user. The
user enters their details, they are checked with a single quick
poll to ensure the credentials are good (with a short timeout
in case the API servers are down), and are either given an er-
ror or told that their report is being generated. Once started,
the job is stored in the database with their credentials, and
the job runs, eventually spitting out a fresh report into the
database which shows up in the user’s interface.

Notably not all of the task at hand is done by the back-
ground job, a quick check is done to inform the initial
feedback to the user. Background jobs are typically only used
where the task will take several seconds; long enough to an-
noy the user or tie up application servers.

Delayed_job and other plugins

There are several choices for plugins to use in background
processing. BackgrounDRb is one of the most mature plugins
but doesn’t work at all on Windows, making developing with
it difficult if you run Windows on your development envi-
ronment. It does however support crontab-style automated
tasks, saving you tinkering with the cron tool directly to run
automatic jobs on a daily or hourly basis.

Nanite is another library which is somewhat more Rails-
independent and thus a little more complex to get working
than others, so it’s not a great choice for beginners. If you
need a huge amount of flexibility, you can set up RabbitMQ
(the Erlang job queue it requires), and can run your code
in an EventMachine-supporting environment (which at the
time of writing rules out Passenger-hosted sites), then you
can have a look at this fantastically fast and flexible tool.
Both BackgrounDRb and Nanite are great tools and worth
considering when choosing a worker, but because they are
more complex to get started with, this guide will focus on
delayed_job. Many of the concepts in delayed_job are repli-
cated in other plugins, so hopefully you can still use some of
the advice and information in this guide when working with
these tools.

Delayed_job is a very flexible, small plugin which has
several advantages: it’s pure Ruby, it uses an ActiveRecord job
queue, and is easy to hack on/modify for your own needs if it
doesn’t support what you need out of the box. These features
make it ideal for most cases and great for beginners. It’s dis-
tributed as a Rails plugin, making installation a cinch, though
at the time of writing it requires you to add a migration to
your database manually.

The plugin is split into several sections: the Delayed::Job
class which represents a job, and the Delayed::Worker class
which is responsible for getting jobs and working through
them. We’ll take a close look at the concepts in delayed_job
and other background processing tools, and then look under
the hood to see how DJ implements those concepts.

Delayed_job Concepts

The underlying concepts of delayed_job are simple
enough to understand and should appear familiar to those
who have used other queue-based background workers. This
is one of the plugin’s key strengths; it is a very simple plugin
that is easily extended and adapted.

Delayed::Job is the class that represents a single job. It
subclasses ActiveRecord::Base, and is backed onto the table

Background Processing with Delayed_Job
by James Harrison

James Harrison is currently reading
Computer Science at Royal
Holloway, University of London and develops
webapps in his spare time using Rails.
His websites include EVE Metrics (http://www.
eve-metrics.com), a market analytics tool for the
virtual world EVE Online working with millions

of transactions, with hundreds of thousands being added every day. In
any time left over, he does live sound engineering and helps out with
the technical side of things
at his local theatre.

Background Processing with Delayed_Job by James Harrison

4

http://www.eve-metrics.com
http://www.eve-metrics.com

5

delayed_jobs. This table contains locked_at/_by columns
which are used for workers to lock jobs to work on them, a
run_at and failed_at pair which define a job’s status, and cre-
ated_at/updated_at columns. As well as this, there is a field
which stores the serialized struct; this lets delayed_job know
what class to call perform on.

Other classes are fairly token in understanding the con-
cepts, other than Delayed::Worker. This class wraps a simple
loop which performs Job#work_off, which we’ll look at in
more detail next.

Under the hood and failure conditions

The Job#work_off method is fairly simple, it gets a given
number of jobs (It’s only parameter, by default 100), and
works through the stack. It reserves each job, calls the per-
form method on the job, and counts successes/failures. Some
more of the logic behind the scenes is found in Job#reserve,
which handles actually locking the job in question. It accepts
a block, and provides the job it has reserved as a variable
to that block. Essentially, this handles locking rather neatly
without having to mess about with the messier parts of that
particular problem if you want to write or adapt your own
worker methods to perform specific jobs and so on.

Failure conditions are to be expected in development and
aren’t something to overlook in production; delayed_job han-
dles this with a last_error column which stores the traceback
from any error that occurs in job processing. However, if a
job fails, it is retried. If that job is going to send 10,000 emails,
you probably don’t want it to repeat if it gets halfway through
and hits a dodgy email, you’d rather just have it send out half
and complain at you quietly, rather than sending 5,000 emails
out 20 times to the same people. It’s not a recommended path
to happy customers, even if you ignore the server load issue!

Fortunately, Job has a constant called: MAX_ATTEMPTS.
Change this and you can have it try once before giving up. It
also has a class attribute: destroy_failed_jobs. By default this
is true, meaning job queues don’t end up with broken jobs.
However, it can make debugging tricky, and I’d recommend
changing this in development. You may want to use some-
thing like the following instead of the default of true:

self.destroy_failed_jobs = (ENV[‘RAILS_
ENV’]==’production’ ? true : false)

This will set the variable accordingly based on your
environment settings. If you use a plugin such as excep-
tion_notifier or a tool like Exceptional, you won’t get notified
about errors in your worker methods as delayed_job rescues
these and stops an exception being raised. You can handle
exceptions manually by adding your code (such as sending an
email) in the rescue section of Job#work_off’s reserve begin/
rescue block. Out of the box, delayed_job does not support
sending emails on errors or similar error reporting.

An example worker

Let’s look at an example worker. Let’s say we want to re-
ceive a YAML-serialized object from another site using a web
hook:

class ProcessPushData < Struct.new(:raw_object)

	 def perform

		 object = YAML::load(raw_object)

		 # Do stuff with object

	 end

end

That’s as simple as they get! It’s really that easy, all we need
is a class that responds to a perform method, and we’re good!
From within this class you have access to your Rails environ-
ment, such as other models. So if we now wanted to create
some new models from that deserialized object, it’s not a
problem.

Working with Delayed::Job

Jobs are all well and good, but how do we add new ones?
Here’s a simple example from an application I’m using de-
layed_job on:

Delayed::Job.enqueue MarketOrderUploadJob.
new(params[:log], @user.id, @key.id)

We simply call the enqueue method, passing it a new
instance of the class, initialized with the variables it expects.
enqueue then serializes this and stores it to the queue to be
picked up by a worker. We can get a little more complex with
something like this:

Delayed::Job.enqueue(1,Time.now+1.day){ MarketOrderU-
ploadJob.new(params[:log],

@user.id, @key.id) }

Gate to meditation

Background Processing with Delayed_Job by James Harrison

5

6
6

This shows two features: priorities and delayed jobs. The
former feature is self explanatory; the higher the priority, the
faster that job will be picked up by a worker (the job finds
SQL orders by priority in descending order). The delayed job
feature allows you to set jobs which will run in the future,
which can be useful in some cases but is typically not needed.

Of course, typically we’ll want to have some sort of inter-
face for viewing our job queue’s status. Easy!

@jobs = Delayed::Job.find(:all, :order => ‘id DESC’)

Delayed::Job is just another ActiveRecord descended class,
so we can treat it as a model to some extent. There’s a few
tricks you might find useful when dealing with jobs in your
views, though.

j.deserialize(j.handler).class #=> The name of the
class this worker is using

j.last_error #=> The last error this job raised during
processing

You can also show a job’s status if locked_at is set, the job
is being worked on. If last_error is set then the job hit an er-
ror and could be flagged for investigation.

There’s another common pattern you may wish to use
when working with data a job should return. If you are gen-
erating a report via a delayed job, you can poll that job or the
report using AJAX on the page, displaying a loading indica-
tor while the report is generated while ensuring a snappy
response for the user. The easiest way to implement this is to
add a Boolean flag to your report’s model, but you can also
record the job ID and look at the job status that way.

Testing and deployment strategies

Testing your delayed_jobs is easy enough, simply run the
perform method in your tests and see if it does what you’d
expect. It’s best to keep the testing of delayed_job itself sepa-
rated from your workers, of course, so add them into your
test suite separately from the plugin’s RSpec tests.

Keeping the workers organized in your source can be a
huge help. Personally I like to keep mine in app/jobs, and use:

config.load_paths += %W(#{RAILS_ROOT}/app/jobs)

to get Rails to load the classes within the folder into the
environment so delayed_job can use them.

Deployment of the workers can be more complex. On
server-side all you need to do is to call a rake task, jobs:work,
to work off jobs. I use God, a Ruby-based process monitor
and manager, to manage my workers. God’s typical recipes
can be used for this, and a full recipe can be found in the
resources section at the end of this article. The only slightly
tricky bit is the start command:

w.start = “rake -f #{RAILS_APPLICATION_ROOT}/Rakele
jobs:work

RAILS_ENV=production”

You can of course run multiple workers, which will name
themselves by hostname and process ID by default. There’s
one other neat trick you can do with delayed_job; let’s say you
have a very time-critical background job that needs doing as
soon as possible, as well as a bunch of not-so-important slow-
running jobs. You can priorities, which will help to some
extent, but even better is to have a worker dedicated to these
jobs. Pick a priority, and specify MIN_PRIORITY on the com-
mand line when you start up the worker:

w.start = “rake -f #{RAILS_APPLICATION_ROOT}/Rakele
jobs:work

RAILS_ENV=production MIN_PRIORITY=2”

This will make this worker ignore all jobs except those
with a priority of 2 or above. You can also use the MAX_PRIOR-
ITY variable for even tighter control. Using these simple flags
you can build complex worker setups that are easily managed
from within God or another service manager of your choice.

Now you’ve got your job written, tested, workers set up on
your server, all that remains is to deploy, restart your work-
ers, and enjoy the extra flexibility of a background processing
queue.

Resources
delayed_job - http://github.com/tobi/delayed_job
nanite - http://github.com/ezmobius/nanite
BackgrounDRb - http://github.com/gnufied/backgroundrb
God: http://god.rubyforge.org/

Discuss: http://railsmagazine.com/4/2

A foggy Yokohama

Code: http://www.talkunafraid.co.uk/railsmag-delayed_job

Background Processing with Delayed_Job by James Harrison

6

http://github.com/tobi/delayed_job/tree/master
http://github.com/ezmobius/nanite/tree/master
http://github.com/gnufied/backgroundrb/tree/master
http://god.rubyforge.org/
http://railsmagazine.com/4/2
http://www.talkunafraid.co.uk/railsmag-delayed_job

7

Background Processing with Delayed_Job by James Harrison

7

http://labs.espace.com.eg/

8
8

There are several ways of generating PDF output with
Rails. Specifically with Ruby or better yet, on all frameworks
and languages. Some techniques include templates written
in LaTeX[1] or DocBook[2], while others require manual
generation of the entire PDF. That, actually, is not a pragmatic
solution for most real-world environments, nor does it follow
the MVC separation principle.

Background and Motivation

At the beginning of 2007, I started working for FAPES
(http://www.fapes.es.gov.br), a government foundation that
incentives research, science and technology in Espírito Santo,
the state where I live. I was given the job to create the site for
our freshly created foundation. It was created altogether with
SECT, the Secretary of Technology in our state, around 2005,
without even a physical place available.

Since it is a small foundation, I was responsible for every-
thing related to IT, including network infrastructure, help-
desk and programming. At the time, I was asked to provide
maintenance to NOSSABOLSA, a web system implemented
in ASP, which was (and still is) an important program of
FAPES/SECT for financing studies in private colleges for
students of low income families. I knew nothing about ASP or
Rails at the time.

My previous serious web programming experience (sev-
eral years before this job) was with Perl. I didn’t work with
web programming for lots of years after that. At the middle
of 2007, I had to develop a new site for promoting an event

we were organizing that needed a subscription system, along
with lots of static information. Since I had a Linux server
available, I didn’t have to implement it in ASP, which would
take a lot of days and I only had a week for developing the
new site.

I started to then look at the web for available modern web
frameworks, that allowed me to develop the website faster. I
took a look at Perl frameworks, of course, J2EE, .Net, Tur-
boGears, Django, Rails and a lot more. It became clear that
Rails was the right choice. So I learned Rails, and developed
the whole site in a week. Since it would be a temporary site,
I didn’t mind trying a new framework at the time. I was so
excited by Rails and specially Ruby, that, when we needed a
new permanent site for FAPES, it was the logical choice.

Shortly after the site creation, there was a need to generate
some contracts based on input from web forms that could be
printed and delivered to FAPES. There were lots of problems
generating the contracts in HTML. CSS was not well thought
for printing. It was difficult (if at all possible) to setup head-
ers & footers and actually the print depends a lot on browser
configurations and rendering engines. As a result, the printed
versions would not follow a unique layout, which was a
problem to us. So, I started thinking about PDF output. I read
all the usual PDF generation techniques but none of them
seemed to fit my needs.

Proposed Solution Overview

The problem was that there were a lot of types of contracts
and they were a bit long, which would take a lot of time for
preparing them without a good template system. I knew the
juridic department was unable to give me LaTeX or Doc-
Book-formatted contract models. They only knew MS Word,
and I had to live with it. There was also not a lot of time for
implementing contracts generation.

It seems that when under pressure, we are extremely
creative. Fortunately, I remembered that ODF was, actually,
a XML file, along other files in a folder structure that were
zipped in an ODF file. I extracted the file and took a look at
a special file, called content.xml. Then I realized that it was
possible (and pretty easy) to replace some special text tem-
plates with form fields submitted to the web server. It was also
pretty easy to import MS Word documents in OpenOffice.
org[3] and save them in ODT format. And I didn’t have to
teach the juridic department any new document writing tech-
nique, such as Latex or DocBook. They could just use what
they were used to.

Generating PDF with ODF templates
by Rodrigo Rosenfeld Rosas

Rodrigo Rosenfeld Rosas is an electrical
engineer, living in Vitória-ES, Brazil. He developed
a C++ framework for Real-Time mobile robotic
systems based on Linux+Xenomai for his master
thesis in 2006, at UFES. For validating purposes, he
also developed a robot and a real-time framegrabber
module. He currently works at Geocontrol (http://

www.geocontrol.com.br) and has found Ruby in 2007, while evaluating
Rails for web developing, after previous experience with C/C++,
Delphi, Perl, among other languages.
He loves his wife and has no children yet (kids are great, but no hurry).
Enjoys surfing, brazilian music (samba, choro, seresta) and playing
guitar, and he is trying to learn other instruments: cavaco, bandolim,
pandeiro, flute and violin (maybe sax and clarinet in the future).
E-mail: rr_rosas@yahoo.com.br.

Generating PDF with ODF templates by Rodrigo Rosenfeld Rosas

8

http://www.fapes.es.gov.br
mailto:rr_rosas@yahoo.com.br

9

Additionally, there were some free tools that could convert
odt to pdf, using OpenOffice.org in a “headless” environment,
which meant that I could run it as a background daemon
without even having a graphical environment installed. This
daemon could be run in the same server as the application or
in another dedicated server, if you prefer. Here is a possible
usage for setting OpenOffice.org as a daemon, listening on
port 3003:

soffice -accept=”socket,host=localhost,port=3003;urp”
-norestore -headless -invisible -nofirststartwizard&

Then, any UNO[4] enabled software could convert any
ODF file to any OpenOffice.org support output format, in-
cluding PDF. For instance, one could use PyODConverter[5]
for converting an odt document to pdf:

/opt/openoffice.org3/program/python DocumentConverter.
py document.odt output.pdf

Just be sure to edit DocumentConverter.py, changing the
port to reflect the one OpenOffice.org is listening at, since the
port can’t be currently passed as a parameter. Following the
above example, it means:

DEFAULT_OPENOFFICE_PORT = 3003

The overall idea is illustrated on the following pictures:

ODF template + HTML form

Final generated output

A Possible Implementation

I was pretty happy for having found the solution to my
problems and only needed some little time to implement the
solution. This technique, actually, can be very easily imple-
mented in any language. At least in Ruby, all seem easy to
implement. Here is what I currently use for generating PDF
contracts (save it to config/initializers/contract.rb):

require ‘rexml/document’

module Contract

 CONST_FIELDS = {‘DirectorName’ => ‘Name of Direc-
tor’, ‘FAPES_Account’ => ‘Account Information’}

 CONTRACTS_URL=’/contracts’; CONTRACTS_DIR = Rails.
public_path+CONTRACTS_URL

 ATTACHMENTS_DIR = “#{CONTRACTS_DIR}/attachments/”

 OUTPUT_DIR = “#{CONTRACTS_DIR}/generated/”; TEM-
PLATES_DIR = “#{CONTRACTS_DIR}/templates/”

 class << self

 # Save the template file at public/contracts/tem-
plates/scholarship.odt, then call:

 # Contract::generate(‘scholarship’, {‘student_name’
=> ‘Rodrigo Rosenfeld’}, ‘scholarships/1’)

 # public/contracts/generated/scholarships/1.pdf
will be created. Output is PDF link address.

 def generate (template_file, fields, output_file,
options={})

 fields.merge!(CONST_FIELDS)

Generating PDF with ODF templates by Rodrigo Rosenfeld Rosas

9

10
10

 template_file = TEMPLATES_DIR+template_file+’.
odt’

 # replaces non-alphanumerics to underscore. Se-
curity is responsability from calling method.

 output_file.gsub! /[^\\\/\w\.\-]/, ‘_’

 pdf_output_filename = OUTPUT_DIR+output_file+’.
pdf’

 pdf_output_filename_temp = options[:attachment]
? OUTPUT_DIR+output_file+’_without_attachment.pdf’ : pdf_
output_filename

 output_file = OUTPUT_DIR+output_file+’.odt’

 output_dir = File.dirname(output_file); File-
Utils.mkdir_p(output_dir)

 Kernel.system “unzip -o #{template_file} con-
tent.xml -d #{output_dir}” or return nil

 content_file = “#{File.readlines(“#{output_dir}/
content.xml”)}”

 # before replacing expressions, generate table
templates

 options[:tables].each {|t| content_file=generate_
table(content_file,

 t[:table_name], t[:line], t[:fields])} if
options[:tables]

 replace_expressions(content_file, fields)

 File.open(“#{output_dir}/content.xml”, ‘w’) {
|f| f.write content_file }

 FileUtils.cp_r template_file, output_file

 #pdf-converter is a script, that currently uses
PyODConverter (DEFAULT_OPENOFFICE_PORT=3003):

 #/opt/openoffice.org3/program/python /usr/local/
bin/DocumentConverter.py $@

 Kernel.system(“zip -j #{output_file} #{output_
dir}/content.xml; pdf-converter #{output_file} #{pdf_out-
put_filename_temp}”) or return nil

 return merge_pdf(pdf_output_filename_temp, AT-
TACHMENTS_DIR + options[:attachment], pdf_output_filename)

if options[:attachment]

 pdf_output_filename.sub /\Apublic/, ‘’

 end

 def replace_expressions(str, fields)

 # The pattern “#{student_name#U}” will be re-
placed by ‘RODRIGO ROSENFELD’

 str.gsub!(/#\{(.*?)(#(.))?\}/) do

 result = (fields[$1] or ‘’)

 case $3

 when ‘U’; result.mb_chars.upcase.to_s

 when ‘d’; result.mb_chars.downcase.to_s

 when ‘C’; result.mb_chars.capitalize.to_s

 # lots of other formatters here for writing
number at full length, as currency, etc.

 else; result # doesn’t change

 end

 end

 end

 # this generates dynamic tables into ODF Tem-
plates. It is necessary to define a name for the table in
OpenOffice.

 # ‘line’ starts at 1.

 # generate_table(content_string, ‘Items’, 2, [{‘n’
=> 1, ‘item’ => ‘Desktop computer’}, {‘n’ => 2, ‘item’ =>
‘Laser printer’}])

 def generate_table(content_xml, table_name, line,
fields)

 document = REXML::Document.new(content_xml)

 template_line = document.root.elements[“//
table:table[@table:name=’#{table_name}’]/table:table-
row[#{line}]”].to_s

 document.to_s.sub(template_line, fields.collect

Sun sets on the Empire of the Rising Sun Bonsai banzai!

Generating PDF with ODF templates by Rodrigo Rosenfeld Rosas

10

11

{|f| replace_expressions(template_line.dup, f)}.join)

 end

 # returns url to merged file or nil if it couldn’t
be generated

 def merge_pdf(contract, attachment, output)

 [contract, attachment].each {|f| return nil un-
less File.exist?(f)}

 Kernel.system(“pdftk #{contract} #{attachment}
cat output #{output}”) or return nil

 output.sub(Rails.public_path, ‘’)

 end

 end

end

The implementation is not really important and I will not
talk very much about it, since I am pretty sure a lot of plug-
ins with better options and implementation will be developed
using this technique. Most of the implementation is trivial to
understand. Optimizations can be made, of course. For instance,
it should not be necessary to unzip content.xml from the tem-
plate before each conversion.

I’ll just take some time to explain some parts that might not
be obvious to all readers.

template_line = document.root.elements[“//table:table[@
table:name=’#{table_name}’]/table:table-row[#{line}]”].
to_s

document.to_s.sub(template_line, fields.collect {|f|
replace_expressions(template_line.dup, f)}.join)

It is intended to support simple table templates. Patterns
should be written in one line, which will be replaced for several
lines containing a collection of data taken from the web, such as
Items to Purchase, or whatever. It is necessary to name the table
(see table properties in OpenOffice) and tell the method which
line should be used as template. First line is number one.

There is also a helper method for merging PDFs, so that one
special PDF can be attached at the end of the dynamic one if it
is necessary. The implementation could be changed to accept
other parameters for specifying a header and a footer PDF. The
implementation uses pdftk[6] for merging them.

As you probably noted, you would write ODT files with
patterns such as “I, #{student_name#U}”, agree...”, that will be re-
placed by “I, RODRIGO ROSENFELD, agree...”, when “Rodrigo
Rosenfeld” is submitted to the web server, in a form.

Test Cases
You should also write an unit test for assuring the output is

correctly generated. Here is a possible unit test (test/unit/con-
tract_test.rb):

require ‘test_helper’

class ContractTest < ActiveSupport::TestCase

 # This test is not definitive, since it doesn’t test
the generated pdf content. But chances are good to be cor-
rect if content.xml is correct and

 # the generated file is a PDF (starts with ‘%PDF’).
However this doesn’t test if the merge is good, although
it assures a lot of steps are working.

 test ‘generate contract’ do

 FileUtils::rm_rf Rails.public_path + ‘/contracts/
generated/scholarships/test/’

 assert_equal ‘/contracts/generated/scholarships/
test/rodrigo.pdf’,

 Contract::generate(‘scholarship’, {‘student_
name’ => ‘Rodrigo Rosenfeld’, ‘address’ => ‘R. Nascimento
Silva, 107’,

	 ‘total’ => 4090.49}, ‘scholarships/test/rodrigo’,

	 :tables => [{:table_name => ‘Items’, :line => 2,
:fields => [{‘name’ => ‘Books’, ‘value’=> 90.49},

	 {‘name’ => ‘Airline Ticketings for International
Congress’, ‘value’ => 4000.00}]}],

	 :attachment => ‘scholarships/contract_terms.pdf’)

Feeding the soul Tradition meets timeless sea

Generating PDF with ODF templates by Rodrigo Rosenfeld Rosas

11

12
12

 assert FileUtils::identical?(Rails.root.to_s + ‘/
test/fixtures/expected_content.xml’,

 Rails.public_path + ‘/contracts/generated/schol-
arships/test/content.xml’)

 f = File.new(Rails.public_path + ‘/contracts/gen-
erated/scholarships/test/rodrigo.pdf’)

 assert_equal ‘%PDF’, f.read(4) # Is the output a
pdf?

 end

end

Conclusion
Generating PDF from ODF templates proved to be pretty

easy. Enjoy your free time, now that you can save a lot of it
manually preparing PDF generation! Or use it for writing a good
plug-in for PDF generation using this technique. :)

Recently, a new plugin for ODF generation, written in
Ruby, is available at http://github.com/sandrods/odf-report/tree/
master. This plugin uses the idea presented in this article for
ODF generation, using the rubyzip gem for zipping/unzipping,
instead of launching an external program for this task. For read-
ers interested in implementing a plugin for PDF generation in
Ruby, I would recomend taking a look at this ODF generator and
adapt it to integrate with OpenOffice.org and PyODConverter as
demonstrated in this article.

Resources
[1] Latex - http://www.latex-project.org
[2] DocBook.org - http://www.docbook.org
[3] OpenOffice.org - http://www.openoffice.org
[4] UNO - http://wiki.services.openoffice.org/wiki/Uno
[5] PyODConverter - http://www.artofsolving.com/open-
source/pyodconverter
[6] pdftk - http://www.pdfhacks.com/pdftk

Discuss: http://railsmagazine.com/4/3

Tokyo Tower

Code: http://github.com/railsmagazine/rmag_downloads

Generating PDF with ODF templates by Rodrigo Rosenfeld Rosas

12

http://github.com/sandrods/odf-report/tree/master
http://github.com/sandrods/odf-report/tree/master
http://www.latex-project.org/
http://www.docbook.org/
http://www.openoffice.org/
http://wiki.services.openoffice.org/wiki/Uno
http://www.artofsolving.com/opensource/pyodconverter
http://www.artofsolving.com/opensource/pyodconverter
http://www.pdfhacks.com/pdftk
http://railsmagazine.com/4/3
http://github.com/railsmagazine/rmag_downloads

13

Rupak: Will most of the appealing features of Merb be
merged into Rails? Will the Merb framework be dropped after
that? If not, what is the goal of the Merb platform now and in
future?

Yehuda: Pretty much everything that we knew and loved
about Merb is slated to be a part of Rails at some point in the
future or made available as a plugin. However, there are still
a number of applications using Merb, and we will continue to
support it as long as there is interest.

Rupak: With all the Rails + Merb development going on,
what would your recommendation be for current Merb users:
Move onto Rails or upgrade to Merb 1.1?

Yehuda: Once we release Merb 1.1, you’re going to want
to be on it. Hold off on upgrading to Rails until the transition
story is complete and stable.

Rupak: What are other features/concepts that will be
shipped with Rails 3?

Yehuda: There are a few categories of changes:

 * Improved internals. Rails 3’s internals have gone
through a major working over in an effort to make them
easier to understand and extend. As much as possible, parts
of the Rails internals have had their object boundaries solidi-
fied and well-defined. This means that if you want to under-
stand how ActionController interacts with ActionView, there
is a well-defined boundary. If you want to replace one of the
components or instrument the boundary, it is now very easy.
This will help with Rails maintenance into the future, and will
also make it a lot easier for plugin developers to write plugins
that work well with future versions of Rails.

 * Performance. Rails 3 has significantly lower overhead
compared with Rails 2. For instance, the overhead of ren-
dering partials or collections is between 20 and 25% of the
overhead of doing the same operation in Rails 2.3. One spe-
cific example: rendering a collection of 100 partials is down
from 8 milliseconds to just 800 microseconds. This is possible
because we can leverage the crisper boundaries between com-
ponents to cache common costs. For instance, we do a much
better job of caching the template lookup for a given path,
format (html), and locale (en).

 * New Paradigms. Probably the most significant new
paradigm is respond_with, imagined last January by DHH,
and written by José Valim. This brings conventionality to
RESTful controllers, wrapping up the default logic in a Re-
sponder object. Instead of a bunch of logic to decide how to

render an object (JS, JSON, or HTML – render or redirect)
you simply say respond_with(@comment). Like I said, this
will use the Rails conventions by default, but it’s possible to
create your own Responder for a given controller or group
of controllers that wraps up a different pattern. You can see a
lot more about this in José’s blog post announcing the feature
(http://blog.plataformatec.com.br/2009/08/embracing-rest-
with-mind-body-and-soul/)

 * Agnosticism. Finally, Rails 3 will make it a core
principle to decouple its implementation from the ORM,
JavaScript library, caching backend, template engine, testing
framework and more. We still want to have a fantastic getting
started experience, with defaults that can bring you from 0 to
60 in no time at all. We also want it to be possible for users
with different needs to use the tools they need to use to get
the job done.

Rupak: Has the Rails Core team been looking at a pos-
sible release date for Rails 3?

Yehuda: We don’t have a release date yet. A lot depends
on how quickly we can get plugins running on Rails 3 and get
through an RC period with most applications transitioning
smoothly.

Rupak: Will there be any backward compatibility issues
with Rails 2.x projects upgrading to Rails 3? Any recommen-
dations?

Yehuda: Backwards compatibility has been a priority.
However, it has been common for people to hack into Rails’
internals to get common things done. Since we’ve done so
much work on the internals, most of those hacks will no lon-

Interview with Yehuda Katz
by Rupak Ganguly on August 15th, 2009

Session on Rails 3
by Yehuda Katz

Interview with Yehuda Katz by Rupak Ganguly on August 15th, 2009

13

14
14

ger work. The good news is that we’re committed to provid-
ing public, supported APIs for people to use to do the same
things.

There will also be some small changes. For instance, we
have finally removed .rhtml, and clearly defined the semantics
for template lookup in ActionView. This means that some
things that may have worked accidentally before won’t work
now. On the bright side, we have now clearly defined the in-
tended behavior, so changes that you make should carry you
forward into the future..

Rupak: What are your initial thoughts about accelerating
the adoption of Rails 3 when it is released?

Yehuda: I’d like to see plugins embrace Rails 3 so we can
hit the ground running with a fully working suite of Rails plu-
gins once we release.

Rupak: To change the subject a bit, How was Ruby Kaigi
2009? What are your impressions about the content presented
and the people you met?

Yehuda: It was really great. I loved being able to meet
some of the people I’ve heard about when doing Ruby work
but never had the pleasure of meeting. The content was at
a very high level – much higher than the average American
Ruby conference. People understood Ruby well and weren’t
afraid to push its boundaries. The talks by the maintainers of
various branches of Ruby were all very interesting as well.

Rupak: How did your presentation go? What was it
about?

Yehuda: My presentation was about how parts of Rails
3 can be used in other contexts. I showed how ActiveModel
allows you to get validations on a standard Ruby object, how
you build a controller from the ground up, and how you
can use ActiveSupport safely as an extended Ruby standard
library.

Rupak: Anything that you would like to say to the orga-
nizers of Ruby Kaigi 2009??

Yehuda: Great job! I’d love to see you in the United States
at some of our conferences.

Rupak: What do you think are the main reasons for such
slow adoption of Ruby 1.9? What features would you like to
emphasize that would encourage it’s adoption?

Yehuda: It has mostly been the lack of a stable transition
path. Database drivers haven’t cleanly worked, various popu-
lar libraries have had problems with encodings, and there are
missing tools (like ruby-debug) that people rely on.

However, Ruby 1.9 is significantly faster than Ruby 1.8, is
more memory efficient, and is generally built on more mod-
ern technology than Ruby 1.8. The problems that have caused
slow adoption are, for the most part, resolved. Database
drivers work, the popular libraries are encoding-aware, Rails
2.3 and above work on Ruby 1.9, and ruby-debug is finally
ported.

Rupak: Any recommendations for people trying to be
compatible with both Ruby 1.8 and 1.9?

Yehuda: The biggest current issue is constant scoping.
You cannot assume that a constant available outside a block
will be available inside it. This is because Ruby 1.9 changes the
constant scope when a block is evaluated in a new context,
unlike Ruby 1.8. For instance, when using RSpec, you cannot
refer to constants that you created inside the “describe” block
inside an “it” block.

Additionally, String#[] now returns a single-character
String; in order to get the Integer value, you’ll need to call
.ord on the result. ActiveSupport has extensions to make for-
ward-compatibility easier. For instance, we define String#ord
on String in Ruby 1.8, so you can replace “Hello”[0] with
“Hello”.ord and get an Integer in both Ruby 1.8 and 1.9.

Rupak: What do you still miss in Ruby?

Yehuda: Interesting question. Over the past few weeks
I’ve been hurting for better caching primitives (the general
purpose Hash isn’t perfectly suited for caching) but I was able

Yehuda Katz is currently employed
by Engine Yard, and works full time as a
Core Team Member on the Rails and Merb
projects. He is the co-author of jQuery in
Action and the upcoming Merb in Action,
and is a contributor to Ruby in Practice.

He spends most of his time hacking on Rails and Merb, but also on
other Ruby community projects, like Rubinius and Datamapper. And
when the solution doesn’t yet exist, he’ll try his hand at creating one –
as such, he’s also created projects like Thor and DO.rb.

Interview with Yehuda Katz by Rupak Ganguly on August 15th, 2009

14

15

to get satisfactory performance using some Ruby tricks. In
general, what I like about Ruby is that even though there are
things I’d like, I can virtually always implement a satisfactory
version of what I’d like using pure Ruby.

Rupak: You recently took part in a Ruby vs Python debate
and whether Ruby is more suitable for Rails than Python.
What is your opinion in brief? [Ref: http://stackoverflow.com/
questions/1099305]?

Yehuda: My argument was that Ruby’s elegant closures
and powerful metaprogramming make it particularly suited
for a framework like Rails. Ruby’s closures make it possible
to implement a feature like Rails’ respond_to in a way that
makes it almost analogous to a new language feature. Simi-
larly, Ruby’s metaprogramming facilities make it possible to
create new functionality, like before_filter or validates_pres-
ence_of, that appear to be extensions to the language itself.

Community Pulse
The Ruby community was abuzz with

the sudden disappearance of _why,
one of its most prominent members

From the perspective of a Rails programmer, the “private”
keyword looks identical to “validates_presence_of ”. Ruby’s
self-hosting nature makes it easy for Rails to provide high-
level abstractions that are easy to use with low conceptual
overhead. For more details, read my post.

Discuss: http://railsmagazine.com/4/4

Interview with Yehuda Katz by Rupak Ganguly on August 15th, 2009

15

http://stackoverflow.com/questions/1099305
http://stackoverflow.com/questions/1099305
http://railsmagazine.com/4/4

16
16

Mark: Okay, we’re dying for an inside scoop — can you
give us any news about Rails 3? For instance, will Rails views
support HTML 5 and CSS 3.x? Or anything new you can
share?

David: Rails really doesn’t say much about how you write
your HTML or CSS. All we do is wrap a bunch of common
HTML in helpers. You’re always free to add your own and
write whatever HTML and CSS you please. But we are indeed
targeting HTML5 for the scaffolding templates and looking to
make nice helpers around things like the new video and audio
tags.

It’s an exciting time for web developers. The momentum
behind HTML5 and CSS3.x is building every day. We’ll make
sure that we’re right there with the best support that we can
offer.

Mark: Can you give us any insight on where you see not
only Rails, but web development in general, going in the next
five years?

David: I try not to engage in too much rubbing of the
crystal ball. Especially when it comes to making long-term
predictions. But considering that the basic building blocks
of the web five years ago were HTML, CSS, and JS, I’ll use
yesterday’s weather and predict that they’ll continue to be the
dominating technologies for implementing web applications.
I don’t have a lot of faith in vendor-driven alternatives like
Silverlight or Flash.

In fact, I think these vendor technologies will have even
less relevance as the new revisions of HTML and CSS and the
speed increases we’ve seen for JS continues to expand what’s
possible to do with these tools. I don’t think most people
will bother with Flash for video, for example, in a few years.
HTML should obviously be able to handle that on its own.

Mark: Is competition in the web development space ulti-
mately good for Rails? What do you think is in competition to
Rails and why?

David: Competition that leads to innovation is always
a great thing. Rails made a lot of people wake up to the fact
that most web development environments were terrible. It’s
great to see that many of these platforms have been making
progress on digesting those ideals.

I think the main competition for Rails is the status quo.
People who have no interest in changing what they’ve been
doing for years. Getting web developers to move on from
antiquated technologies should be the mission for all the

next-generation frameworks and libraries currently eyeing
competition amongst themselves. We have much more to
gain from increasing the size of the pie than from haggling
over the crumbs that are up for grabs.

Mark: What do you think about Microsoft and ASP.net
jumping on the MVC bandwagon and do you think Rails’ suc-
cess prompted their adoption?

David: Microsoft is late to the party as usual, but they can
afford to be. Or at least they used to be able to afford it. Lots
of places are so locked in to Microsoft technologies that they
don’t even look at anything else. It’s good that these people
are now finally being exposed to some of the ideas the open
source world have been enjoying for a long time.

I absolutely think that Microsoft was acting reactionary.
Not just to Rails but to many of the other modern platforms
that are intent on improving life for developers.

Mark: What do you see as the second-best web develop-
ment framework?

David: I don’t use anything but Rails for actual develop-
ment, so I’m not properly equipped to answer that. But I like
what both Django and Seaside are doing.

Mark: Can you share your thoughts on getting Rails into
‘enterprise’ environments, specifically large, old guard orga-
nizations that are intimately tied to Microsoft? Moreover, is
Rails ready for the enterprise?

David: I think this question is a few years stale. Rails
is already deep inside tons of enterprise environments. I’ve
found that the most important parameter for this penetration
is just time. If you are big, old, stodgy organization, you’re
simply not capable (or interested) in being at the cutting edge.
So anything that doesn’t have a year long history behind it
rarely gets considered. Thankfully, we’re finally getting there
with Rails, so it’s getting easier for people every day.

Mark: Are you currently writing any books? Or planning
to in the near future?

David: I actually just finished the manuscript on a new
book called Rework that’ll be published in spring next year.
I wrote along with Jason Fried and Matt Linderman from
37signals. It’s a more general, updated, awesome version of
our previous book on starting a web business called Getting
Real. Mighty excited about that!

Interview with David Heinemeier Hansson
by Mark Coates on August 18th, 2009

Interview with David Heinemeier Hansson by Mark Coates on August 18th, 2009

16

17

Mark: Where is 37signals headed? Any new products on
the horizon? Or any new technologies/frameworks brewing or
being extracted from your projects?

David: We just announced that we’ve been working on a
big integration project for quite a while called 37signals Ac-
counts. Single sign-on, integration, suites, and all that good
jazz. We also have a variety of internal exploration projects
that we’re not ready to talk about yet. But I’m sure we’ll be
able to extract some good stuff from that.

Real-time updates is one of the things we’ve been playing
with that’s pretty exciting.

Mark: Are you involved with anything outside of 37sig-
nals and Rails—any side commercial or open source projects,
maybe?

David: I have my hands plenty full running 37signals,
being involved with Rails, and carrying a functional social life
on the side.

Mark: And finally, our readers are dying to know — pi-
rates or ninjas?

David: Pirates, obviously.

David Heinemeier Hansson was born
in 1979 in Copenhagen, Denmark. After he

graduated from Copenhagen Business School
in 2005, he moved to Chicago. He is a partner

at 37signals (http://37signals.com), the company
behind Basecamp, Highrise, Backpack, Campfire,

Writeboard, and Ta-da List.
37signals also runs a popular weblog called Signal vs. Noise.

David is the creator of Ruby on Rails, which he has been working on
since 2003. He won the Google and O’Reilly award for Best Hacker of

the Year in 2005 for his work on rails and the Jolt award for product
excellence for Rails 1.0. He also co-authored the successful books

Getting Real and Agile Web Development with Rails, which have sold
over 140,000 copies together world-wide.

Discuss: http://railsmagazine.com/4/5

Interview with David Heinemeier Hansson by Mark Coates on August 18th, 2009

17

http://37signals.com/
http://railsmagazine.com/4/5

18
18

Amongst all the revolution happening in the Web 2.0 era,
web publishing has been a revolution in itself. In recent times,
the concept of web publishing has evolved itself into a major
field of software development and have got eyeballs from all
over the world. Content Management Systems have been the
result of this movement both commercial and Open Source.
Blogs, Wikis and CMS like Drupal, Joomla has become
extremely popular for making it substantially easy to publish
content over the web, and help the users focus on content
rather than worrying about the code.

Radiant CMS, as their website defines is “Radiant is a
no-fluff, open source content management system designed
for small teams”. This means it does not boast of too many
amazing features out of the box but provides a light and flex-
ible framework to develop with. As an introductory article,
I will walk you through the installation of Radiant CMS and
then familiarize you with the terminology associated with the
system.

Installing Radiant

Anyone with even basic knowledge of Rails can go
through the setup of Radiant in a breeze. I will start the
installation on my local machine, which is an Ubuntu 8.10.
The pre-requisites for installing Radiant on your machine are
Ruby 1.8.6 or later, Rails 2.1, MySQL/PostgreSQL/SQLite3
and RubyGems.

saurabh@laptop:~$ gem install radiant

Once, the gem is installed, create your project directory
and change directory to it:

saurabh@laptop:~$ mkdir radiant

saurabh@laptop:~$ cd radiant/

The radiant command with the database switch creates
a Rails Radiant application for you. You can then select the
database as MySQL, Postgres and SQLite3, which changes the
config/database.yml file according to the selected database. In
my case, my choice was MySQL.

saurabh@laptop:~/radiant$ radiant --database mysql /
home/saurabh/radiant/

As a result of running this command, you will get a list of
directories created just as in a Rails application. . Here are the
folders that gets created on running this command:

CHANGELOG CONTRIBUTORS INSTALL log Rakefile
script

config db LICENSE public README
vendor

We now change the config/database.yml to suit our data-
base settings. By default, Radiant needs the user to create only
a production database, however the user can choose to create
a development and/or a test database too.

saurabh@laptop:~/radiant$ rake production db:bootstrap

Once we run this in our project directory, the bootstrap
script will migrate the tables and add them to the database. At
the end of that process, the script asks the user some ques-
tions necessary to setup and administer the application.

Create the admin user (press enter for defaults).

Name (Administrator): saurabh

Username (admin): admin	

Password (radiant):

Initializing configuration.........OK

Select a database template:

1. Empty

Feel the Radiance with Radiant CMS
by Saurabh Bhatia

Saurabh Bhatia is Co-Founder and CEO of
Safew Technology Labs. He has been working
with Ruby and Rails since 2005. He loves to
write software in Rails apart from managing his
company.
He also has a knack for system administration
and is an expert level Linux system

administrator. In his free time, he likes to listen to music and read
fiction. He can be reached at saurabh@noisybrain.net.

On the move

Feel the Radiance with Radiant CMS by Saurabh Bhatia

18

19

2. Roasters (a coffee-themed blog / brochure)

3. Simple Blog

4. Styled Blog

[1-4]: 4

Creating Snippets....OK

Creating Pages....OK

Creating Layouts....OK

Creating Page parts....OK

Finished.

Once we are through with these questions, we can start
up the server in production mode and navigate to the http://
localhost:3000/ to see our application up and running.

saurabh@laptop:~/radiant$ script/server -e production

We are now ready to manage the content, so we navi-
gate to http://localhost:3000/admin/login and login with the
credentials we provided during the installation process. Once
inside, we are presented with the administrator panel as
shown in Figure 2.

Getting familiar with the Radiant terminology

The first tryst with Radiant might confuse you but once
you understand the organization of components in Radiant,
you can actually unlock the real power of Radiant, which is
high modularity and re-usability of the components.

We will first get familiar with the small components that
form a Page in Radiant, and then dive into how this page is
formed using these sub-components.

Radius Tags

Radius tags are tags similar to HTML tags, but specific
to Radiant CMS. They can be used anywhere inside Pages,
Snippets or Layouts, except the names. Radius tags are intel-
ligently built into four categories and that’s what differentiates
it from other tags. These are:

Content Tags: These tags refer to the different page attri-1.	
butes like title (<r:title/>),or content (<r:snippet />) and
are mostly self enclosing in nature.
Tags that change Page context: These tags refer to a 1.	
container tag and control from which page the contained
tags get their content, e.g. <r:parent>
Conditional Tags: They start with <r:if_ or <r:unless_ and 2.	
are container type tags. Only when the conditions defined
in the tag are satisfied, the contained content or other ele-
ments are rendered.
Tags that work with collections: They are mostly the tags 3.	
that do not fall under any other categories.

We can write custom radius tags in order to extend the
radiant markup.

Snippets

As the name goes, snippets are small pieces of code, that
perform different functions and can be reused. A snippet just
needs to be created once. If you have to use some text across
several different pages, reuse some pieces of code over differ-
ent layouts, you can simply create a snippet and call it within
that page or layout.

We can add a snippet as shown in the code sample below,
by navigating to the snippet tab in the admin panel and click-
ing on “snippet”. Here is an example of how you can create a
reusable snippet:

Name: table_of_contents

Snippet:
<r:children:each limit=”10” order=”desc”>

 <r:link />

</r:children:each>

While saving, you have an option of keeping it as Mark-
down or Textile. Once created, this snippet can be called from
within a page using a radius tag as follows:

<r:snippet name=”table_of_contents”/>

Layouts

Layouts are like the body of HTML. They help us define
how the page will look like and how the various elements will
be arranged on the pages. Layouts are also reusable, just like

Feel the Radiance with Radiant CMS by Saurabh Bhatia

19

http://localhost:3000/admin/login

20
20

Snippets and can be included under other layouts too. The
various portions of the layout like the content, can be writ-
ten in any language we desire, apart from the radius tags, like
HTML, XML, JavaScript. The screen to create a layout can be
seen in Figure 3.

Pages

Pages follow a Parent – Child structure. A parent page
can have many children pages and they can in turn have their
children pages. This structure makes the site organization
easier. Figure 4 shows how the page Admin looks like.

Pages are filled by snippets and layouts, yet they have their
own set of attributes:

Title1.	 : This is the name of the Page in plain text. This
shows up on the title bar of the browser when the page is
displayed.
Slug4.	 : Slug is the link to the page being made. This link is
generally taken automatically from the title of the page
but it can be customized by clicking on the More link
and then providing a custom text for it. Spaces are not
allowed because these are parts of the URL.
Breadcrumb5.	 : Breadcrumb is for the user to see the navi-
gation on the page. It is displayed in a format such that, a
sequential trail is created starting from parent to the cur-
rent page. It depicts the hierarchy of the page structure.

Other parts on the Page Admin are:
Filter•	 : This is helpful in selecting the content type for
the contents and parts to be defined in a particular

Resources
Radiant CMS Homepage - http://radiantcms.org/
Radiant Wiki - http://wiki.github.com/radiant/radiant

page. The default options of Filter are Markdown,
Smarty pants and Textile.
Page Types•	 : Page type helps us define the kind of pages
for the site. Pages can be Normal, Blog Type and Ar-
chive. Depending upon the selection, they are showed
in the final output. With File Not Found, a custom-
ized error page can be generated and used in case the
defined error occurs on the site.
Status•	 : The Status of a Page depicts whether it has
been saved or published by the user. Once published,
the user will be able to see the page according to one’s
definitions.

Extensions

Radiant, just like any other CMS can be extended easily,
when the default functionality of the radiant framework is not
sufficient. There are several extensions available for Radiant,
common ones being TinyMCE Editor and Latex for display-
ing mathematical formulaes and much more.

Conclusion

Radiant, as they say, is a no fluff CMS, provides us with a
modular architecture which can be easily played around with.
For a Rails programmer or a small rails team, Radiant makes
it easier to extend and customize it to the specific needs of the
user. Radiant also has a very active open source community.

Discuss: http://railsmagazine.com/4/6

Feel the Radiance with Radiant CMS by Saurabh Bhatia

20

http://radiantcms.org/
http://wiki.github.com/radiant/radiant
http://railsmagazine.com/4/6

21

Rupak: What are the reasons behind the move to Engine-
Yard?

Thomas: Engine Yard is a very highly respected Ruby
(and Rails) company. When they approached us they pointed
out that JRuby could be better represented by a smaller more
focused company than a larger one where Ruby is not a
primary focus. They also were willing to include Nick Sieger
as a Full-Time JRuby developer. So more resources and more
focus. Very compelling...

Another benefit of Engine Yard will be agility in reacting
to business opportunities. EY is not so large that they cannot
quickly react to a changing market. If there is a good oppor-
tunity to offer commercial JRuby support or JRuby training,
then I am confident that EY will act swiftly on those opportu-
nities.

Rupak: You mentioned elsewhere the uncertainty after
Sun’s acquisition by Oracle. What related Sun initiatives do
you feel may be in a similar situation?

Thomas: Big companies merging always have their share
of tough decisions. Perhaps if two technologies overlap too
much they may end up cancelling whole projects or partially
merging those technologies together. I think overlaps is where
most of the layoffs will come...but then again what do I know?
I am not Oracle and I really have no idea what they might be
interested in. Perhaps a particular overlapped technology at
Sun will be more interesting than what they currently have at
Oracle. Maybe some Oracle employees will get laid off. Maybe
they will “double down” and more aggressively develop that
part of the business.

It is difficult to guess on how a large company will make
decisions. I certainly don’t want to make any predictions since
I would hate for them to come true. Especially, since I know
many engineers at Sun and I would hate to jinx their chances.

Rupak: What type of support will you get from Engine-
Yard that wasn’t available before? How would that affect the
future of JRuby?

Thomas: I touched on this a little bit in 1, but I will add a
little more...

EY is growing the full-time developers on our team to
three. So 50% more JRuby developer goodness. On top of that
I am sure that we will be getting help on making better docu-
mentation and at least some level of support for JRuby users.
The fact that we are joining a Ruby company is important
since it also means we will have access to Ruby experts and
people who understand how to support Ruby in a cloud envi-

ronment. Also access to Rails committers like Yehuda Katz.
And these last few points should remind us that Engine Yard
has a great reputation in the Ruby and Rails community. This
will help expand our reach within the Rails community. I
hope this announcement will help give Ruby users another
reason to consider investigating JRuby.

Rupak: EngineYard started to offer JRuby hosting recent-
ly. Will you be part of that or is your time dedicated to further
JRuby development?

Thomas: We will still be working on JRuby itself, but
we will be helping as needed with any discovered problems
or missing functionality in JRuby. Largely, the problems that
Engine Yard may run into for a hosting
service are the same problems that other JRuby users will run
into.

Interview with Thomas Enebo
by Rupak Ganguly on August 1st, 2009

Thomas Enebo has been working with
Java since 1997 and co-leading the JRuby
project since 2003. Thomas is working to
make JRuby a piece of software that will

capture the hearts and minds of Ruby and
Java developers everywhere. His goal is to
make JRuby the best possible Java Virtual

Machine (JVM) implementation of the
Ruby language and to make the JVM and the Java platform the

best possible host for all languages.

Session on JRuby by Thomas Enebo
and Nick Sieger from Sun Microsystems

Interview with Thomas Enebo by Rupak Ganguly on August 1st, 2009

21

22
22

Rupak: What things should the community expect from
the JRuby team after this move? What are your expectations
or needs from the community?

Thomas: Compatibility and performance improvements
should always be expected from our development activities....
but I think this move is going to give us more focus on sand-
ing and polishing some of the rough edges of JRuby. Docu-
mentation, extra steps that are not required by C Ruby, etc...

I am hoping this move will help expand the Ruby and
JRuby communities and this in turn will help us get more bug
reports and success stories; which in turn will help expand
the Ruby and JRuby communities...and so on :)

Rupak: Would you like to add anything else for our read-
ers?

Thomas: In the next year we also plan on courting Java
developers more by making improvements which makes it
easier for Java developers to start using Rails without having
to “start over” with their codebase.

I think it is important to grow the size of the Ruby and
Rails communities and Java is the 800 pound gorilla in the
room. Getting more Java programmers using Ruby/Rails
will also start making Ruby and Rails even more acceptable
technologies in bigger companies. This in turn should help
Rubyists find more jobs.

JRuby is not only a great Ruby implementation it is also a
gateway technology and we should concentrate on that side of
JRuby this year.

Discuss: http://railsmagazine.com/4/7

Audience at Ruby Kaigi

Interview with Thomas Enebo by Rupak Ganguly on August 1st, 2009

22

http://windycityrails.org/
http://railsmagazine.com/4/7

23

Oracle database software’s near-zero cost in academia
result in ubiquitous usage. Pairing Rails with Oracle isn’t pres-
ently void of issues, but there are no real show stoppers. Here
are a few things I’ve ran into and how I worked around them.

Oracle’s Missing Time Field

Oracle doesn’t have a time field like other popular
databases. You may very well define a :time type in an
ActiveRecord::Migration, but Oracle will give you a date field
instead. The date field will hold a time value most of the time,
but not always.

A sort of “gotcha” occurs when you get a record with
the time portion set to midnight. In this special case Oracle
doesn’t return any time value at all in this special case, instead
it just returns the date part of the record. On the Ruby/Rails
end you get back a Date class instead of a Time class. This
means your time field will not have min or hour methods. The
solution is coercion, using to_time:

foo = Foo.find(:first)

foo.my_time_field = foo.my_time_field.to_time

After that your date field will contain a time that’s set to
midnight (luckily this matches our special case from above
exactly). Another workaround is to rescue the exception with
a zero value:

foo.my_time_field.hour rescue 0

foo.my_time_field.min rescue 0

Keep session data stored in Oracle simple

The Oracle-Ruby database driver has some issues with
storing complex data in a session. I had a scenario where I
needed to store objects in a session temporarily while waiting
to put their parent data in the database first. Something like
this would cause the issue:

foo = Foo.new(params[:foo])

session[:foos] << foo

I suspect the cause is the fact that an ActiveRecord object
owns a database handle, and when you accumulate several of
them, threading issues arise. I will admit I did not pursue it
further once I found a workaround.

The solution was to not store the complex data in the ses-
sion at all, but instead only store a session variable pointing to
the data:

foo = Foo.create(params[:foo])

session[:foos] << foo.id

This solution works fine but has the side effect of allow-

ing orphaned data to appear in the database if a session to
browser connection is ever lost.

I will also mention this issue never bubbled up until my
app was deployed to a 64-bit machine. In a 32-bit environ-
ment it seems I can store all the ActiveRecord objects in a
session that I want to.

Learn to purge Oracle’s recycle bin

Rails migrations allow the destroying and rebuilding of a
project database on a whim.

rake db:migrate VERSION=0; rake db:migrate

A “gotcha” occurs after running these commands several
dozen times or more. Newer versions of Oracle do not actu-
ally drop constraints. Instead Oracle saves them to the Oracle
recycle bin. Over time they build up and cause otherwise
speedy migrations to take longer and longer to run.

The solution is to dump Oracle’s recycle bin periodically.
Add this to the end (and beginning too if you want) of your
ActiveRecord migrations:

execute ‘purge recyclebin’

Oracle’s Sequence Cache

By default Oracle caches requests for new sequences
in blocks of 20. This might become a problem if you need
numbers without gaps as you will get 1, 2, 3... and then
later 23, 24, 25... To fix it I just added this to the appropriate
ActiveRecord::Migration:

execute ‘ALTER SEQUENCE FOO_SEQ NOCACHE’

Oracle Tips and Tricks
by Greg Donald

Greg Donald is a career software developer
currently working in computational genomics

research at Vanderbilt University Medical Center
in Nashville, TN. Greg has a wife, three children,

and five cats. Greg is a member of both the Free
Software Foundation and the Linux Foundation

and prefers to use open-source software whenever
possible. In addition to writing new Ruby and Rails code for fun and

profit, Greg also enjoys shredding along to his favorite Slayer tunes on
his 6-string http://slayer.net/.

Web site: http://gregdonald.com/

Discuss: http://railsmagazine.com/4/8

Oracle Tips and Tricks by Greg Donald

23

http://slayer.net/
http://gregdonald.com/
http://railsmagazine.com/4/8

24
24

Ruby Kaigi
Rails Magazine

Exclusive Coverage

RubyKaigi or "Ruby Conference" is the
largest Ruby conference in Japan, where Ruby

was born. Tens of professionals including
Ruby-core committers are giving their talks on

Ruby in different fields and perspectives.

RubyKaigi 2009 took place in Tokyo,
between 17-19th of July.

The speakers list of this year included Matz,
Koichi Sasada, Katz, Tom Enebo, Nick Sieger

and many other professionals.

The official site is
 http://rubykaigi.org/2009/en

Muhammad Ali, eSpace
Session on Neverblock

Lightning talks timer

Scott Chacon, Github
Session on Git and
Github

Audience

24

http://rubykaigi.org/2009/en

25

RubyKaigi 2009 (Tokyo, July 17–19)

‘The Japanese have a name for their problem: Galápagos
Syndrome’. As I was flying back from Tokyo, I had to admit, as
I folded the newspaper and stowed it into the pouch in front of
me, that was the same feeling I had. Sure the article was about
cell phones and how many ‘species’ of such advanced technol-
ogy have developed and evolved so fantastically divergent from
the rest of the world…

But Ruby is not like that! It’s one of those species that
was brave enough to leave the sanctuary of its own island to
venture off into other worlds — even leaving an impact on
them. If you’re reading this, that’s probably what you want to
believe. But to be honest, the kaigi (or ‘meeting’ or ‘conference’
in Japanese) did show some signs of the isolation syndrome,
as much as it did show globalization. In this following lines,
we will briefly cover the largest Ruby meet-up in Ruby’s native
homeland and muse over some of its highlights.

‘Change!’ is in the Kaze

On the first day, during registration, a cheerful volun-
teer handed me my name-tag and conference package. The
promotional knapsack was all black, save for the red words
written on it that desperately screamed ‘CHANGE!’. I felt
relieved; apparently the organizers also felt that the syndrome
must be eradicated, so much so that they made it the slogan of
this year’s conference and saw it as a goal to be achieved – in
fact the idea of “Change” was one of the pivotal points in the
keynote speech.

It’s true that change was indeed in the works. In the fourth
conference since RubyKaigi’s existence, foreign speakers (such
as ourselves) were invited, making it a multilingual conference
for the first time. As one of the posters proudly boasted, there
were speakers and attendees from five continents who had
presented around a quarter of the talks. It was refreshing to see
how all the sessions – both in Japanese and English – were very
well attended by the ~300 individuals there.

Organization, Organizers, and Volunteers

In a city that never sleeps, and works by the clock, the or-
ganization level and punctuality in the conference was nothing
short of what one would expect from the Japanese. The confer-
ence was very well coordinated and organized from sessions,
to bento lunches and refreshments, to parties and socialization.
Each day, the schedule was split into three time slots to contain
multiple sessions in each, with talks going on in parallel to
squeeze in all the ~60 sessions in the three days available. The
first two days also had a series of lightning talks that were
composed of extremely short presentations for tens of people

to display their latest work, speaking in the fastest Japanese (or
English, as in our case) physically possible. Even though they
were too fast for translation, it was interesting to watch ideas
fly by with a bit of manga-like humour.

It is a pity though that many important talks were in
Japanese, from the opening, all the way through the keynotes,
down to the closing. There was best-effort live translation via a
projector, but that didn’t really do justice to the talks and there
were periodic translation outages. I must admit though, the
organizers and volunteers did try to do their best, but the sheer
number of attendees and talks was simply overwhelming. At
this moment, I really must mention Leonard Chin, the alleged
mastermind behind the organizing team. All the volunteers
were helpful and energetic as well, despite the language barrier
— after all we all spoke Ruby!

Also, keeping true to the Japanese fondness of having a
good drink after a hard day’s work, the organizers orchestrated
a pre-conference party and two other receptions throughout
the conference. Even though it’s not as fun for non-drinkers
like us, it still presented a great opportunity for all the partici-
pants to get to know each other better.

A True Ruby Mecca

As hundreds of wild-haired, glasses-donning, computer
otaku flocked to the main Hitotsubashi conference hall, one
was bound to feel a shiver down his spine: this is, after all,
where Ruby was born. Numerous beehive discussions were
taking place and there was even in one corner a donation box
dedicated to gathering funds to get “_why” to come as well in
some unforeseen, yet hopeful, future. No, this is not just where
Ruby was born, but where it continues to live and grow. The
hundreds in attendance were musing over different ideas and
dreams to as what Ruby will grow to be someday when, sud-
denly, they fell into a trance and were all ears as the keynote
speaker came forth to have his say. Their reaction was just like
that of those looking up to the pope as he steps into his papal

RubyKaigi 2009 Roundup
by Ehab El-Badry

Map showing where foreign participants are from

RubyKaigi 2009 Roundup by Ehab El-Badry

25

26
26

balcony, eager to listen and take in what is to come.

Just in case you haven’t guessed yet, the keynote speech was
delivered by the designer of Ruby, Yukihiro Matsumoto (aka
Matz). Where else but in Japan would a computer scientist be
a folk hero, a celebrity known by even the normal population,
and even the subject of tabloid news?

Again, a pity that the keynote was in Japanese, but Matz

was a really good presenter and he easily grasped the attention
of the entire hall. Here are some highlights:

We had dreamt that the 21•	 st century would have been
better than this – but in reality we are living in dark
times. Yet, this is the golden age for programming –
especially with technologies like Ruby, and the likes of
other very powerful and clean languages.
I just recently got an award from a minister for my creat-•	
ing Ruby. I had to wear a jacket during the meeting, so
I borrowed one. Likewise, I couldn’t have made Ruby
without the help and contribution of others. All bug
reports, ideas and contributions were extremely helpful
and, even though I may not buy you dinner, I have to
share this award with you all.
The Ruby community is changing a lot and it is very •	
evident from the diversity of attendees and speakers here
at RubyKaigi.

As in Aesop’s ‘Sour Grapes’, I am not immune: I look at •	
other languages and love to complain. But people should
not misinterpret this to mean that the stance of Ruby is
to be against all others – this is just a matter of my own
taste.
It’s important to not turn your back on the truth and •	
always make self-justifications. I admit that Ruby has
many faults, and, although it may take a long time to fix
them, they will undoubtedly be resolved. Responsibility
is the key towards doing this right.
I remember when I was a kid, my dad gave me a knife •	
to sharpen my pencils with; every boy at the school had
one of these. It is unimaginable these days that kids can
go to schools with knives, yet in our time we never used
them to stab each other. This is responsibility.
I am experimenting with some interesting stuff for Ruby •	
like O(1) bitmap marker, GC for symbols, better Date
implementation, keyword arguments and many more
improvements.
To wrap things up, Ruby is fair — be responsible and •	
Ruby trusts you to be so. We need to remember that not
only is Ruby agile, but it is also fragile.

Highlights from the Sessions

The sessions varied widely in scope, from talks focused
on integrating Ruby with other technologies like Asterisk and
iPhone Cocoa, to talks about building scalable Ruby applica-
tions in certain domains, to talks about specific libraries and
services. Moreover, as one being at the homeland of the Ruby
core team would expect, there were several sessions talking
about the internals of Ruby and the future of the Ruby virtual
machine.

The kickoff session was from Github’s Scott Chacon, who
talked about Git and how it can be used to improve Ruby
developers’ performance, especially those working on open
source projects. The presentation was titled “Using Git and

Ehab El-Badry is COO at eSpace and has a knack
for project management of web projects and was
once a sysadmin in his previous life. And because
work is not everything in life, he enjoys traveling to
exotic places around the world, and learning foreign
cultures and languages such as Japanese.

Muhammad and Matz

RubyKaigi 2009 Roundup by Ehab El-Badry

26

27

GitHub to Develop One Million Times Faster*”, complete with
the fine print on how results may vary. It really did display a
great deal of interesting features and apparently most of the
audience were using Git or are planning to migrate to it — we
know we are!

Ruby’s viability in communication software was stressed
a lot by the Adhearsion talk given be Jason Goecke, which
showed how Ruby can drive Asterisk installations with all the
ease and flexibility of Ruby, without sacrificing the power of
Asterisk. One example used was the automation of call centers.
Another very interesting example was twittervotereport.com,
which helps users report, via phone, real time complaints on
vote ballots using voice menus and keystrokes. The demos
shown stressed the mix of power and simplicity in Adhearsion.

James Edward’s talk, “How Lazy Americans Monitor
Servers”, highlighted how Ruby can be used in long running
applications like monitoring systems. He showcased Scout,
which is a plugin/recipe based monitoring system with very
low overhead. He was able to use the power of Ruby to build a
very flexible system and utilize multiprocessing to the fullest to
add the robustness needed from long running programs.

Ilya Grigorik from igvita.com presented how Ruby can be
useful even for demanding problems like the C10K challenge,
which basically states that current server hardware should be
able to handle a very large number of concurrent connections
– namely 10,000. Ilya reviewed some techniques and recom-
mendations for shaping Ruby up to the challenge, and then he
demonstrated their own EM-Proxy as an example.

Yehuda Katz’s talk on “Making Rails 3 a Better Ruby Citi-
zen” focused on the new changes happening to Rails internals
to make it more Ruby-like. He concentrated on the use of com-
mon Ruby idioms and provided examples to show that they are
as powerful as the current Rails way but they are cleaner and
expose much nicer interfaces. Another issue was the intercon-
nection between different Rails components like ActionCon-

troller and ActionView. The idea with Rails 3.0 is to minimize
the areas where these components interact and keep it to a
few publicly known methods, thus allowing a third party to
provide replacements easily. Even internal components of ac-
tive record, like validations or life cycle management, are now
separated from each other and can be used, or even swapped,
independently.

eSpace’s Mohammad Ali presented NeverBlock and the
talk focused on Ruby concurrency models and how they
can optimize Ruby for high I/O performance. He presented
NeverBlock as an option that can optimize Ruby’s I/O while
maintaining program readability. A case study was given where
a new back-end that uses NeverBlock was written for a Thin
server and was able to largely outperform the original back-
end, especially for large data transfers.

While there were nice comments and jokes embedded
in most presentations, it was Aaron Patterson who went
the extra mile in entertaining the audience. Dressed like a
Japanese pirate, he gave a mixed Japanese and English talk
and was assisted by a kunoichi (or female ninja) who guided
the audience whether to ‘laugh’ or ‘applause’ throughout the
presentation using cue cards. His lecture, a remake of “Journey
Through a Pointy Forest: XML Parsing in Ruby”, was about
Nokogiri and XML handling in Ruby. For added laughs, he
poked fun at his Enterprise project which converts Ruby code
to XML in order to make Ruby more enterprise ready. ;)

Retrospective

All in all, it was an experience we’d definitely want to go
through again and we highly recommend it. All the presenta-
tions were top-notch, entertaining and greatly informative, and
every single one of them ended with a great number of ques-
tions, signaling how relevant they were to the audience.

Sure there were barriers, and they really did show. There
were many things we never heard of, or were not aware of,
coming from the outside world. At the beginning, it was frus-
trating not just to us, but to other “foreign” Rubyists as well,
but throughout the conference things loosened up and the
barriers dissolved. No one says that they don’t exist, actually
everyone fully acknowledges they do, but if there is one thing
the kaigi actually accomplished, it is exactly what it set out to
do: inflict change.

To be able to rub shoulders will people like Matz, Koichi,
and numerous others, to discuss future road plans, to expose
– and be exposed to – the latest in what there is to know from
the core team and others, is beyond anything a Rubyist can ask
for. If you are able to cross that thinning language barrier and
are willing to show off some fluent Ruby, then after a whiff of
wasabi you’ll know this is as real as it gets.

Discuss: http://railsmagazine.com/4/10

Session on Nokogiri by Aaron Paterson

RubyKaigi 2009 Roundup by Ehab El-Badry

27

http://railsmagazine.com/4/10

28
28

Oldmoe: Hello Matz, we’d like to start with the question,
What are we going to see with Ruby 1.9.2?

Matz: An even more stable 1.9.x, 1.9.0 was released 2
years ago but not really that stable (much more like a tech-
nology preview) After one more year of working we released
1.9.1 which was delayed a bit. The community assigned an
official release manager for 1.9.x series to streamline the re-
leasing process. While 1.9.1 is supposed to be stable we aim to
make 1.9.2 even more stable and more compatible with 1.8.7.
Lots of bugs got fixed. Unicode processing is more stable and
faster than 1.9.1.

Oldmoe: What is the status of the Ruby GC in 1.9.2?
Some of the latest commits indicate a generational collector is
being experimented with.

Matz: Author Nari is assigned GC experimentation. He
wrote a patch that provides generational support for special
node objects. Those are allocated on a different heap that is

scanned less frequently. Ko1 recently changed the byte code
structure to use less node references which should also make
GC runs finish faster. This is most useful in applications that
load lots of classes and modules, e.g. Rails.

Oldmoe: What else is planned for 1.9.2?

Matz: No syntax changes planned. A notable thing is that
we relaxed limitations on time periods for the Time classes,
we are no longer limited by UNIX time periods. And the
good thing is that we still use UNIX time for performance
when the time object lies within its boundaries.

Oldmoe: And what is planned after 1.9.2?

Matz: Work should start on Ruby 2.0, I want to improve
on the code scalability aspect of the language design. May be
introducing a new name space management that helps with
huge projects. This tough to implement efficiently so we need
to investigate this.

Oldmoe: Do you code in other languages? Python?

Matz: I write several lines of code to experiment with it.
It has a rich set of libraries. But the design is drastically differ-
ent.

Oldmoe: Are you considering any new programming
models to incorporate into Ruby?

Matz: It might be good to utilize multiple processes for
multicore processing. Also Ruby provides very little in IPC

Interview with Matz
by Muhammad Ali on June 20th, 2009

Yukihiro Matsumoto (aka Matz) is a Japanese
computer scientist and software programmer best
known as the chief designer of the Ruby programming
language and its reference implementation, Matz’s
Ruby Interpreter (MRI).

29 Steps.

Ruby . Ruby-on-Rails. Iphone. Web Design. Application Development.
Audit. User Interface Design. Ruby-On-Rails training.

“We love the web ... and Rails.”

We are a startup company who specializes in
Ruby, Rails and the web.

Visit us at http://29steps.co.uk

Interview with Matz by Muhammad Ali on June 20th, 2009

28

http://29steps.co.uk/

29

primitives. It would probably be good to have a multiprocess-
ing implementation.

Oldmoe: Shouldn’t the standard library go on diet?

Matz: Maybe but it’s a long term process, we need to em-
phasize compatibility between minor versions. Not the case
with Ruby 2.0 which should have less bundled libraries.

Oldmoe: Do you have any design regressions? Things you
wish were done differently?

Matz: Local variable scoping. When the scope is deter-
mined lexically but other scopes might affect it in place. Can
cause bugs that are quite difficult to find.

Oldmoe: How do you see the Ruby community lately

Matz: I still think the Ruby people are ‘nice’ people and I
want them to be fair. There should be no dictatorship. Every-
one should be rational with each other.

Our challenge is how to embrace the people from the rails
community and we need to integrate them into the culture of
the Ruby language.

Oldmoe: Shouldn’t the Ruby culture evolve to adapt
them?

Matz: The Ruby culture should evolve all the time. 10
years ago we were more influenced by Perl programmers.
Recently functional language programmers are leading the
cultural change.

Oldmoe: Aren’t you afraid that one day the PHP pro-
grammers will be leading the cultural change?

Matz: I hope we can integrate them as well.

Oldmoe: Any exciting news for Ruby that you can share
with us?

Matz: The Japanese government gave a grant for making
Ruby and other Japanese software projects faster. For them
to suitable for HPC by may be utilizing some sort of JIT
compiler or a AOT compiler. We aim to build NumPy, SciPy
equivalents for Ruby to make Ruby suitable for areas beyond
web development.

Oldmoe: What about embedding Ruby?

Matz: No budget is set yet but it is on the Radar so it has
to progress on a community basis as of currently.

Oldmoe: When you wrote Ruby did you see that it will
make this revolution in web development?

Matz: No, I have not seen that, it really exceeded my ex-
pectations. Feels like living a dream, one that you don’t want
to wake up from.

Oldmoe: With the new Ruby implementations appearing
everyday aren’t you afraid to lose your control of the lan-
guage?

Matz: Currently they respect my design and even if they
take it beyond that I will be a fork and not Ruby itself (maybe
Ruby++) so I am not worried that much.

Oldmoe: Thank you Matz for your time.

Muhammad Ali is co-founder of, and CTO
at eSpace Technologies (www.espace.com.eg), a

software development firm that is located in sunny
Alexandria, Egypt and is specialized

 in Ruby on Rails.
He had been playing with a diverse set of languages
from C to Java and JavaScript for eleven years when

he finally entered into a steady relationship with
Ruby and Rails four years ago. Oldmoe has contributed to many open

source projects and is particularly interested in researching software
concurrency models.

Blog: oldmoe.blogspot.com

Discuss: http://railsmagazine.com/4/11

Muhammad and Matz
Interview with Matz by Muhammad Ali on June 20th, 2009

29

http://www.espace.com.eg/
http://oldmoe.blogspot.com/
http://railsmagazine.com/4/11

30
30

Oldmoe: Hello Koichi, let’s start by asking what are you
planning for Ruby 1.9.2?

Koichi: I am mostly interested in the core. Optimization,
debugging and profiling support. We are now trying to define
the API to expose the internal structure. They were open in
1.8 but we had to close them and we need to expose C level
API functions. I am mostly interested in cleanly exposing the
internal structure for a tracing API. If we conclude the design
soon it will make it to 1.9.2.

Oldmoe: A tracing API for use in a tracing optimizer?

Koichi: Well, the new tracing API is mainly geared
towards debugging and profiling rather than optimization at
this stage. Ultimately we want to build an optimizing JIT.

Oldmoe: And what about RICSIN? Will it come to 1.9.2?

Koichi: I want to move C extensions to RICSIN. Which
is more efficient because RICSIN calls C methods directly.
It might not be included in 1.9.2 due to time constraints.
Though I can sneak it in via a single instruction modification
to the VM without other committers noticing, except Matz, I
will probably do that!

Oldmoe: What is the current state of GC optimizations?

Koichi: It is hard to implement a generational garbage
collection of the current MRI. Mostly because of write barrier
issues. Author Nari is experimenting with a semi generational
garbage collection that stores nodes in a different heap. This
leads to the GC not checking for code very often. But cur-
rently we store inline cache in specially managed heaps by the
VM and we do not expose them to the GC thus making this
part more efficient. We will most likely use that and roll back
the semi generational garbage collector.

Oldmoe: Matz mentioned that Ruby is being funded for
use in HPC, how will the VM adapt?

Koichi: Yes, currently Ruby has received funding to
improve its use in HPC. These guys usually use Fortran and
we hope to reach a state for the first 5 years which will en-
able Ruby to be viable in the HPC area at least for effective
prototyping. This is mostly an academic effort so we will need
to publish many papers. We need to balance the academic
efforts with providing practical implementations.

Oldmoe: What about the current status of the fiber
implementation?

Koichi: Using getcontext/setcontext should help fibers be
much faster. It should help some clever library writers to use
it. If someone has idea to improve fiber features please tell us.
We basically wrote the fibers for enumerators but not for scal-
able I/O. Seeing them used for scalable I/O is interesting.

Oldmoe: What about Multi Virtual Machines (MVM)?

Koichi: My goal of MVM is to find an efficient way to
communicate between several VMs in the same process. This

Interview with Koichi Sasada
by Muhammad Ali on June 20th, 2009

Koichi Sasada is the creator and current
maintainer of YARV, the official Ruby
Interpreter for Ruby 1.9.
He is also running the Sasada laboratory at
The University of Tokyo, researching Ruby
and virtual machines.

Muhammad and Koichi

Interview with Koichi Sasada by Muhammad Ali on June 20th, 2009

30

31

should also enable parallel computing in a single process
for CRuby. It is currently lagging the current trunk. It needs
some work to enable it to use C extensions.

Oldmoe: What about a multi process approach to MVM?

Koichi: We are not considering it right now. But ulti-
mately we want the API to seal the actual implementation
which might decide to fork a new process or a new thread
or even start a new process on a new machine across the
network.

Oldmoe: What are your plans for the future of the Ruby
VM?

Koichi: I believe some compilation can be done. Either
JIT or AOT compilation. I am considering a tracing optimiz-
er. It should enable Ruby to gain optimizations like those that
happened for Firefox and Safari Javascript engines. Ultimately
we don’t want to hand code a very complex VM. Whenever
we can automate the optimizations it will be better as we need
to keep the core of the VM very simple.

Oldmoe: What about facilities for writing optimizers in
Ruby?

Koichi: I have made a proposal to Matz to provide a to_s
method to procs but we are still considering it. This should
provide the ability of doing runtime optimizations in Ruby. I
would say that we want to have more clever ideas to improve
performance without sacrificing the dynamic features of
Ruby.

Oldmoe: Thank you Koichi for your time.

Rails Magazine Team

Olimpiu Metiu
Editor-in-chief

http://railsmagazine.com/authors/1

Khaled al Habache

Editor

http://railsmagazine.com/authors/4

Rupak Ganguly

Editor

http://railsmagazine.com/authors/13

Mark Coates

Editor

http://railsmagazine.com/authors/14

Carlo Pecchia

Editor

http://railsmagazine.com/authors/17

Starr Horne

Editor

http://railsmagazine.com/authors/15

John Yerhot

Editor

http://railsmagazine.com/authors/2

Bob Martens

Editor

http://railsmagazine.com/authors/16
Discuss: http://railsmagazine.com/4/12

Feedback Board

Front Cover Photo: “Hope is in the silver lining” by Rupak Ganguly

Interview with Koichi Sasada by Muhammad Ali on June 20th, 2009

31

http://railsmagazine.com/authors/1
http://railsmagazine.com/authors/4
http://railsmagazine.com/authors/13
http://railsmagazine.com/authors/14
http://railsmagazine.com/authors/17
http://railsmagazine.com/authors/15
http://railsmagazine.com/authors/2
http://railsmagazine.com/authors/16
http://railsmagazine.com/4/12

32
32

Take our Survey
Shape Rails Magazine

Please take a moment to complete our survey:

http://survey.railsmagazine.com/

The survey is anonymous, takes about 5 minutes to com-
plete and your participation will help the magazine in the
long run and influence its direction.

Visit Us
http://RailsMagazine.com

Subscribe to get Rails Magazine delivered to your mailbox
Free•	
Immediate delivery•	
Environment-friendly•	

Call for Papers
Top 10 Reasons to Publish in Rails Magazine

Call for Artists
Get Noticed

Contact Us
Get Involved

Contact form: http://railsmagazine.com/contact

Email: editor@railsmagazine.com

Twitter: http://twitter.com/railsmagazine

Spread the word: http://railsmagazine.com/share

Are you a designer, illustrator or photographer?

Do you have an artist friend or colleague?

Would you like to see your art featured in Rails
Magazine?

Just send us a note with a link to your pro-
posed portfolio. Between 10 and 20 images will be
needed to illustrate a full issue.

1.	 Gain recognition – differentiate and establish
yourself as a Rails expert and published author.

2.	 Showcase your skills. Find new clients. Drive
traffic to your blog or business.

3.	 Gain karma points for sharing your knowl-
edge with the Ruby on Rails community.

4.	 Get your message out. Find contributors for
your projects.

5.	 Get the Rails Magazine Author badge on your
site.

6.	 You recognize a good opportunity when you
see it. Joining a magazine's editorial staff is
easier in the early stages of the publication.

7.	 Reach a large pool of influencers and Rails-savvy developers
(for recruiting, educating, product promotion etc).

8.	 See your work beautifully laid out in a professional magazine.
9.	 You like the idea of a free Rails magazine and would like us

to succeed.
10.	Have fun and amaze your friends by living a secret life as a

magazine columnist :-)

Sponsor and Advertise
Connect with your audience and promote your brand.

Rails Magazine advertising serves a higher purpose
beyond just raising revenue. We want to help Ruby on Rails
related businesses succeed by connecting them with custom-
ers.

We also want members of the Rails community to be
informed of relevant services.

Join Us on Facebook
http://www.facebook.com/pages/Rails-Magazine/23044874683

Follow Rails Magazine on Facebook and gain access to
exclusive content or magazine related news. From exclusive
videos to sneak previews of upcoming articles!

Help spread the word about Rails Magazine!

http://survey.railsmagazine.com/
http://survey.railsmagazine.com/
http://RailsMagazine.com
http://RailsMagazine.com
http://railsmagazine.com/publish
http://railsmagazine.com/publish
http://railsmagazine.com/contact
http://railsmagazine.com/contact
http://twitter.com/railsmagazine
http://railsmagazine.com/share
http://railsmagazine.com/advertise
http://railsmagazine.com

	Button 1:

